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Fig. 1 Notation
for a toroidal
shell.

sive variations in the thickness were avoided and a high de-
gree of accuracy in the geometry of the shell’s middie surface
was achieved. To obtain accurate values of the critical
pressures for epoxy shells, one must select the material com-
position in such a way that room temperature creep is
minimized. This selection results in a material that has a
high modulus and is brittle. Thus when buckling oceurs,
the shell shatters and it is not possible to observe the develop-
ment of a buckling pattern. Therefore, in addition to the
shells with high modulus, one shell was manufactured from a
very ductile material with a low modulus. The epoxy system
for the brittle and high-modulus (E = 500,000) material is
composed of 100 pbw Bakelite Resin ERL 2774, and 10 pbw
Diethanolamine. The low modulus material was obtained
through addition of 60 pbw Thiokol LP33 to the composition
used for the brittle material. - The material components were
thoroughly mixed at 100°F. The mold for the half-torus
together with the epoxy system was placed in a furnace that
was maintained at a temperature of 160°. The epoxy was
forced to fill the mold under pressure. The flow rate was held
very low in order to minimize entrapment of air. About 1 hr
was required to fill the mold. The male mandrel portion of

a)} Unloaded shell

b) Axisymmetric buckling

¢) Nonsymmetric buckling

Fig. 2 Photographs of ductile test specimen.
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the mold was allowed to free float on the resin such that it
lifted when the mold was full. Then the epoxy was allowed
to flow over the edges for some time before the free floating
mandrel was clamped tight to the female part. After a curing
eycle of 24 hr at 160°F the half-shell was removed from the
mold. A room temperature curing adhesive was used to bond
the two halves of the shell together. The following adhesive
composition was selected to match the material properties of
the shell: 100 pbw Bakelite Resin ERL 2774, 10 pbw Tri-
ethylenetetramine, 3 pbw Aluminum Powder.

Three shells made from the brittle material were tested.
External pressure was applied through partial evacuation of
the air in the shell. The experimentally determined pressures
at failure for the shells are 6.32, 6.60, and 6.64 psi, whereas the
theoretical pressure (Ref. 1) based on nominal dimensions is
7.00 psi.  After the tests, thickness measurements were made
on the shell fragments. It appeared that the thickness was
quite uniform but somewhat less than the nominal value of
0.050 in. Thus, the experimental values are somewhat above
the theoretical buckling load based on actual dimensions.

One toroidal shell was manufactured from the ductile ma-
terial. The photographs in Fig. 2 show how the buckling
pattern develops for this shell. Figures 2a and 2b, respec-
tively, show the torus before and after application of pressure.
From Figs. 2b, it is seen that an axisymmetric deformation
pattern has developed. As the load is further increased a
nonsymmetrical buckling pattern (see Fig. 2¢) is superim-
posed on the symmetrical pattern. According to theory, the
axisymmetrie buckling mode is critical for a torus with b/a
= 2 and a/h = 50. This buckling pattern appears to be
stable (the buckle amplitude grows under increasing load).
As a small amplitude symmetric buckling is difficult to detect,
it seems possible that the brittle shells really buckled at loads
somewhat below those at which the shell shattered. This
would tend to explain the somewhat higher values of the ex-
perimental buckling pressures.

It can be concluded that for accurately manufactured
toroidal shells, such as those tested here, one can expect good
agreement between test and theory.
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o = gpectral radius
T = superscript indicating matrix transpose
8;; = kroniker delta

NUMERICAL solution of the incompressible, two-di-
mensional, time-dependent Navier-Stokes equations of
viscous fluid motion, which is implicit in time as well as
space, has been developed for the case of a uniform flow past
a body with rectangular boundaries undergoing pitch oscilla-
tions.12
The method is implicit in both space and time, so that two
difference equations must be solved simultaneously by itera-
tion over the entire field at each time step. With the de-
velopment of an optimized two-parameter acceleration
method, it was possible to reduce the required number of
iterations by more than an order of magnitude from that re-
quired by Gauss-Seide] iteration, and to remove the restric-
tion placed on the maximum size of the time step by the
Gauss-Seidel technique. The general idea of acceleration
methods is, of course, well known?; however, the determina-
tion of the optimum acceleration parameters for, and the ap-
plication to, this nonlinear set of simultaneous equations has
not heretofore been given.
For two-dimensional flow, the time-dependent, incompres-
sible Navier-Stokes equations in body-fixed coordinates may
be written in terms of the vorticity { and the stream function
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With the time derivative approximated by a three-point
backward difference expression and the space derivatives
approximated by central difference expressions with the
intervals equal in each direction, the differential equations
(1) and (2) may be approximated, respectively, by the dif-
ference equations [{:, ;"= { (24, ¥5, ) |:

(3h* -+ 8k) T = Bt — Cogn™t — 4ha) +
2k ($o ™+ G + Soin® + g™ —
(k/2) (s — Yijam) o™ — Fimns™) +
(#/2) (isri" — i Goin® — i) 3)
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With rectangular field boundaries represented by ¢ = 0,1 + 1,
and j = 0,J + 1, each of these difference equations represents
a set of I.J equations, so that there are 2IJ simultaneous, al-
gebraic equations to be solved simultaneously.

The question of stability and convergence of any iterative
procedure can only be answered completely by a considera-
tion of Eqs. (3) and (4) simultaneously, one of which equa-
tions is nonlinear. However, Poisson’s equation is known
to have excellent convergence properties when solved alone.®
Therefore, it is reasonable to assume that the convergence of
the simultaneous solution of the nonlinear vorticity equation
(3) and the Poisson equation for the stream function (4) will
be most affected by the convergence properties of the non-
linear equation. It is then reasonable that the acceleration
parameters which are optimum for the vorticity equation (3)
when solved alone, with 1 constant during the iteration,
should also accelerate the convergence of the simultaneous
solution of Egs. (3) and (4) by a significant amount, even
though the acceleration parameters so obtained would not
necessarily be optimum for the simultaneous solution.
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The vorticity equation (3) may be expressed in matrixt
form as

{(BRh* + 8uvk)I — [2vkI + (k/2M]L —
[20kI — (k/2)NIB — [20KI — (k/2)M LT —
(2041 + (k/2)NIBT}L = [A2(4L~t — {72 —
4kol) + 20k(Z + Y + W + V) — (k/2)M(Z - Y) +
(k/2NW — V)] (5)

where the matrices involved are defined as follows:
1) I-order square matrices

(WOi)es = 6stini  (Y3)ie == 80101,650,;
(&3)is == 65slas (Z5)is = 8i,181.58 141,
ADie = 8 Piis = 81,1015¥0.5
(Lp:is = 0i1, (Q7)rs = 80.101.0%1 11,5

2) J-order square matrices with I-order square matrices for
elements

(d{)]ﬁs = 51’:8‘@3 (L)j,s = aj.sLI
(‘:)j,s = 5]',‘9{8 (B)J',s = 5j—l.sII

@M = 8;.1n (Y)i» = 05..Ys
(Z)j.s = 0j.Zs Vi = 65.101.:C0
P)js == 8Py (W)je == 8;,005,:0341
(Q)js = 8,03 (R)j.s = 8;.101,:00

(S)is = 065,585,741
Also,
M = (B7{B + S) — (B{B” + R)
N = (L™L + Q) — (LYL” + P)

The vorticity equation is now in the form A{ = F, in
which the matrices A and F would be constant if the vorticity
were being solved for alone with ¢ constant during the
iteration.

Let the matrix A be split so that A = A; — A, where
Ai(o,y) = (1 + o)A/ (y) with A/(y) = (1/v)(3h? + 8vk)I
— (20K + (k/2MIL — [2vkI — (k/2)N]B. Here o and v
are the two acceleration parameters, yet to be determined.

‘With this splitting, Eq. (56) becomes

A(e,V)(P = Ay(o,v){» D + F ®)

where the superscript indicates the iteration number. (With
o = 0 and v = 1, this splitting represents Gauss-Seidel
iteration, which always uses the most recently calculated
values of {.) Convergence then depends on the eigenvalues
of the matrix D

D(o,v) =AY o,7)As(c,7)

(The iterative solution converges if all the eigenvalues of D
are less than unity in magnitude.)

For cell Reynolds number AU /» much greater than 2, the
magnitudes of the eigenvalues £,,, of D are given by one of
the following expressions,' depending on the value of @,
For p,q such that apq > |[(1 — ¥)2/v|, the magnitude of
the corresponding eigenvalue £&,,, is given by

lo — {V0p.q £ [Viap.2 — (1 — ¥)]V%}
l g+ 1

and for p,q such that a,,, < |(1 — ¥)¥%/y]|, the magnitude
|£5.¢] is given by

lgp-ql = (7)

(o + 1 = 7)* = 4oyt 2]
c+ 1

[fp.qi = (8)

1 Matrix is indicated in bold face.
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Fig. 1 Convergence properties of unaccelerated solution.

Here

4+ (U/v)2]re ™D mq
%0 = TI3(h2/vk) + 8] [COS<I T 1) + COS<J + 1)]

The spectral radius of D then is given by

playy) = maxl Ep,q\
0.9

Maximum convergence acceleration is achieved using those
values of ¢ and v that minimize the spectral radius of D, i.e.,
result in the smallest maximum eigenvalue of D in magnitude.
Now define!

(7n)s= = (1/2(11,12) [_1 + (1 + 4a1‘12)1/2]
(Ym)e = [1/2(min a,,0)2]{~1 = [1 + 4(min a,,.)?]V%}
1.4

2.q
Note that min,,,a,,, is either zero or very nearly zero so that
(Ym)+ =1, (Ym)- =X — .

All values of v in the range (yn)- < v < (v.)- produce
divergence (p > 1). In the range (y»). < v < (Yw)+ the
optimum + and o are v = (v.)+ and ¢ = 0, for which the
spectral radius is given by

p=1—{2/1 + (1 + 4a.%)12]} 9)

Finally, in the range v > (Ya)+ the optimum < and ¢ are
v = 1and ¢ = 2a,,,%, with the corresponding spectral radius
given by

p=1/[1 + (1/20:.%] (10)

Since the spectral radius given by Eq. (9) is less than that
given by Eq. (10), the final optimum v and o are

o* =0 (11)
v* = 2/[1 + (1 + daa?)?] (12)

for which the spectral radius is
p* =1 — {2/l + (1 + 4a.®)*2]} (13)

The spectral radius of the optimized accelerated solution
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then is less than 1 for all values of a;,;. This solution, there-
fore, converges for all values of the velocity, time step, cell
size, and viscosity.

In contrast to this absolute convergence of the optimized
accelerated solution, the unaccelerated solution (y = 1, ¢ =
0; Gauss-Seidel iteration) is only conditionally convergent.
In that case,! ‘

44+ (U/») T T 2
P = 02/ + 8P [°°S<I T 1) + °°S<J + 1)] (14

so that the solution converges only if
1+ (U/2»)/[1 + BR*/8vk)]* <1 (15)

Without aceceleration the maximum time step for which the
iteration will converge is, therefore, limited.

The success of the application of the acceleration parameters
optimized for the solution of the nonlinear equation alone to
the simultaneous solution was demonstrated by computer
experimentation with both the accelerated [y given by Eq.
(12), ¢ = 0] and the unaccelerated (v = 1, ¢ = 0) solutions.
The accelerated solution requires only about 5%, of the itera-
tions required by the unaccelerated solution. Since the com-~
puter run time is directly proportional to the number of
iterations, the accelerated solution can be run in only 5% of
the time required by the unaccelerated solution. The conclu-
sion of convergence of the accelerated solution for time steps so
large that the unaccelerated solution diverges has also been
verified by computer runs, and no divergence of the accelerated
solution has yet been found for any time step.

In relation to the question of how closely the convergence
properties of the simultaneous solution are approximated by
those of the vorticity equation alone, Fig. 1 is presented.
This figure shows the results of actual computer runs made
with the unaccelerated solution, for which the convergence
criteria are given by Eq. (15). The points on this figure
represent velocities ranging from 1 fps to 200 fps, vis-
cosities from 0.00016 ft2/sec to 0.016 ft2/see, and cell sizes
from 0.00052 ft to 0.0052 ft. The theoretical boundary be-
tween convergence and divergence obtained for the vorticity
equation alone is clearly an excellent approximation to the
boundary for the simultaneous solution. This adds credence
to the assumption that the optimum acceleration parameters
for the solution of nonlinear vorticity equation alone are very
nearly optimum for the simultaneous solution as well.

The success of this acceleration method, in which the opti-
mum values of two acceleration parameters are determined
for the solution of the nonlinear equation alone and then ap-
plied to the simultaneous solution, should serve as a guide to
the use of a similar technique for other such systems of
equations.
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